High Pressure Synthesis and Electrical and Magnetic Properties of MnGe₄ and CoGe₄

H. TAKIZAWA, T. SATO, T. ENDO, AND M. SHIMADA

Department of Molecular Chemistry and Engineering, Faculty of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi 980, Japan

Received January 2, 1990; in revised form May 25, 1990

The new germanides, $MnGe_4$ and $CoGe_4$, were synthesized by solid state reactions at 5.5–6 GPa and 600–700°C for 2 hr using the belt-type high pressure apparatus. The crystal structures of $MnGe_4$ and $CoGe_4$ are superstructures of the β -NiHg₄-type structures. The unit cell of $MnGe_4$ is composed of four β -NiHg₄-type cells and that of $CoGe_4$ is composed of eight β -NiHg₄-type cells. $MnGe_4$ is a metallic conductor and an itinerant electron ferromagnet with a Curie temperature of 340 K. $CoGe_4$ is a metallic conductor and a Pauli paramagnet. © 1990 Academic Press, Inc.

Introduction

There have been a number of investigations about the preparations and the physical properties of intermetallic compounds in the binary transition metal-4B metalloid atom systems. Transition metal silicides, especially, have been widely investigated because of their various kinds of electrical and magnetic properties and their potential application in solid state electronic devices (1, 2).

Although crystal structure and physical properties of transition metal germanides are expected to be similar to those of transition metal silicides, no systematic investigations have yet been carried out. Transition metal germanides have various chemical compositions represented by formulas such as T_3 Ge, T_2 Ge, T_5 Ge₃, T_{11} Ge₈, TGe, TGe₂, and TGe₄ (T: transition metal). Among these germanides, the compounds containing more than 67 at.% Ge were rarely investigated. Only two compounds, IrGe₄ and 0022-4596/90 \$3.00

Copyright © 1990 by Academic Press, Inc. All rights of reproduction in any form reserved. RhGe₄, were synthesized (3, 4). Recent investigations on synthesis of transition metal germanides demonstrate that the high pressure synthesis is a suitable method for the preparation of new germanides with high germanium contents (5-7).

In the present study, $MnGe_4$ and $CoGe_4$ were synthesized under high pressure-temperature conditions, and their electrical and magnetic properties were investigated.

Experimental

Manganese and cobalt powders (>99.9% purity) and germanium powder (>99.99% purity) were mixed with Ge/T (T: Mn, Co) atomic ratios varying from 4.0 to 5.0 using an agate mortar and uniaxially pressed at 100 MPa at room temperature to form pellets, 5 mm in diameter and 3 mm in thickness. The pellets were put into a cylindrical BN capsule, which was placed in a carbon heater. The assemblage was put into a cell constructed with NaCl and subjected to high

pressure-temperature conditions using the belt-type high pressure apparatus. The high pressure-temperature treatments were carried out at 5.5-6 GPa and $600-700^{\circ}$ C for 2 hr, and then the samples were quenched to room temperature prior to releasing the applied pressure. The detailed preparation procedures were described in the previous paper (5).

The pellets thus obtained were pulverized and the residual germanium was removed by leaching with 5 N NaOH + 3% H₂O₂ solutions at room temperature. Chemical analysis was carried out by means of ICP emission spectrochemical analysis.

The phase of product was identified by Xray powder diffraction analysis using Nifiltered CuK α radiation or Fe-filtered CoK α radiation. Lattice parameters were determined by a least-squares method using silicon as an internal standard.

The electrical resistivity was measured by a standard four-probes method in the temperature range 77–400 K. Magnetization and magnetic susceptibility were measured by a magnetic torsion balance in magnetic field up to 10 kOe in the temperature range 77–450 K.

Experimental Results

MnGe₄

MnGe₄ was synthesized at 5.5 GPa and 600-700°C for 2 hr. The product obtained from the reaction with the starting composition of Ge/Mn = 4.0 contained small amounts of Mn₃Ge₅ and MnGe₂. A single phase of MnGe₄ was obtained from the product with the starting composition of Ge/Mn = 4.8 by leaching out the residual germanium. The germanium content of the single phase sample was analyzed to be 85.8 ± 0.1 wt% Ge, which was relatively higher than the calculated value of 84.1 wt% Ge in MnGe₄.

The X-ray powder diffraction data of

d _{obsd} (nm)	d_{calcd} (nm)	h	k	I	I _{obsd}	
0.551	0.5515	2	0	0	vvw	
0.500	0.4992	1	0	1	vw	
0.3072	0.3073	3	0	1	m	
0.2800	0.2799	0	0	2	s	
0.2757	0.2757	4	0	0	vs	
0.2496	0.2496	2	0	2	w	
0.2469	0.2466	4	2	0	w	
0.2416	0.2414	4	1	1	w	
0.2051	0.2052	4	3	1,501	vw	
0.1965	0.1964	4	0	2	vvs	
0.1951	0.1950	4	4	0	s	
0.1839	0.1839	1	0	3,600	w	
0.1600	0.1600	4	4	2	m	
0.1425	0.1425	4	3	3, 503	w	
0.1400	0.1400	0	0	4	w	
0.1378	0.1378	5	2	3,800	w	
0.1342	0.1342	6	4	2	w	
0.1329	0.1329	7	4	1,811	vw	
0.1265	0.1266	5	4	3	vw	
0.1248	0.1248	4	0	4	w	
0.1237	0.1237	8	0	2	w	
0.1234	0.1233	6	3	3,840	w	
0.1204	0.1204	7	0	3	vw	
0.1138	0.1137	4	4	4	w	
0.1129	0.1128	8	4	2	m	
0.1113	0.1114	1	0	5,604	vw	
0.1104	0.1103	7	4	3, 8 1 3,10 0 0	w	
0.1072	0.1071	3	0	5	vw	
0.1033	0.1033	4	1	5,644	vw	
0.1026	0.1026	8	6	2,10 0 2	vw	
0.1024	0.1024	9	0	3,10 4 0	vw	

TABLE I X-Ray Powder Diffraction Data of MnGe₄

MnGe₄ are listed in Table I. All diffraction peaks of MnGe₄ could be completely indexed in the tetragonal structure with lattice constants of $a = 1.103 \pm 0.001$ and c = 0.5598 ± 0.0003 nm, respectively. Since the observed reflections satisfied the condition of h + k + l = 2n, the space group is expected to be one of I4/m, I422, I4mm, $I\overline{4}m2$, $I\overline{4}2m$, or I4/mmm.

 $MnGe_4$ was metastable under ambient pressure condition and decomposed into Mn_5Ge_3 and Ge at 270–300°C.

The results of magnetization measurements of $MnGe_4$ are shown in Figs. 1 and

FIG. 1. Magnetic field dependence of magnetization of MnGe₄.

2. MnGe₄ exhibited ferromagnetic behavior with a Curie temperature of 340 K. The saturation magnetic moment, μ_s , of Mn atom extrapolated to 0 K was calculated to be 1.2 $\pm 0.1 \mu_B$. Above the Curie temperature, the magnetic susceptibility followed the Curie-Weiss-type law $M\chi_g = M\chi_c + C/(T - \Theta_p)$, where *M* is the formula weight and χ_c is the temperature-independent magnetic susceptibility. The number of effective Bohr magnetons, P_{eff} , and the paramagnetic Curie temperature, Θ_p , were calculated to be 2.83 $\pm 0.03 \mu_B$ and 349 ± 3 K, respectively.

Figure 3 shows the results of the electrical resistivity measurement; MnGe₄ exhibits metallic conduction. The ρ -T curve was not

FIG. 2. Temperature dependence of magnetization and reciprocal magnetic susceptibility of $MnGe_4$.

FIG. 3. Temperature dependence of electrical resistivity of $MnGe_4$.

linear in the measured temperature range; an anomaly was observed at the Curie temperature.

$CoGe_4$

CoGe₄ was synthesized at 6 GPa and 600-700°C for 2 hr. Single phase CoGe₄ was obtained from the product with the starting composition of Ge/Co = 4.2 by leaching out the residual germanium. The germanium content of the single phase sample was analyzed to be 83.5 ± 0.1 wt% Ge, which was slightly higher than the calculated value of 83.1 wt% Ge in CoGe₄.

The X-ray powder diffraction data of $CoGe_4$ are listed in Table II. All diffraction peaks of $CoGe_4$ were completely indexed in the cubic structure with a lattice constant of $a = 1.099 \pm 0.001$ nm. Since the observed reflections satisfied the condition h + k + l = 2n, the space group is expected to be one of I23, I2₁3, Im3, I432, I43m, Ia3, or Im3m.

 $CoGe_4$ was metastable under ambient pressure condition and decomposed into $CoGe_2$ and Ge at 380-400°C.

The temperature dependence of electrical resistivity of $CoGe_4$ is shown in Fig. 4. $CoGe_4$ shows metallic conduction with a linear temperature dependence of resistivity.

m

X-RAY POWDER DIFFRACTION DATA OF CoGe4 $d_{\rm calcd}$ (nm) hkl d_{obsd} (nm) I_{obsd} 0.449 0.4487 2 1 1 vw 2 0.318 0.3172 2 2 vw 0.2937 2 0.2938 3 ł m 0.2749 0.2748 4 0 0 vs 0,411 0.2592 0.2590 3 3 vw 0.2459 0.2457 4 2 0 m 4 3 1,510 0.2157 0.2155 vw 2 1 0.2006 5 0.2007 w 0.1944 0.1943 4 4 0 vvs 0.1832 0.1832 6 0 0, 4 4 2 w 1, 532 0.1784 0.1783 6 1 w 0.1587 0.1586 4 4 4 m 5 2, 6 3 3, 7 2 1 0.1497 0.1496 5 vw 8 0 0.1374 0.1374 0 m 4,820 0.1334 0.1333 6 4 vw 4 0 0.1229 0.1229 8 m

TABLE II

The measurements of the magnetic susceptibility show that $CoGe_4$ is a Pauli paramagnetic with a magnetic susceptibility of 5×10^{-7} emu/g.

8 4 4

0.1122

Discussion

0.1122

Crystal Structures of MnGe₄ and CoGe₄

Some TX_4 compounds of the transition metal-4B metalloid atom systems have

FIG. 4. Temperature dependence of electrical resistivity of $CoGe_4$.

FIG. 5. Crystal structure of β -NiHg₄.

been synthesized. From the crystallographic point of view, these compounds are classified into three groups. IrGe₄ has the hexagonal structure with the space group of $P3_121$, which is closely related to defecttype γ -brass structure (3). RhGe₄ is isostructural with $IrGe_4$ (4). Stannides ($IrSn_4$, $PdSn_4$, and $PtSn_4$) have the orthorhombic PtSn₄-type structure (space group Aba2), which can be derived from the CoGe₂-type structure (4, 8-10). PtPb₄ has the tetragonal structure with the space group of P4/nbm, which is derived from the CuAl₂-type structure (11). No further TX_4 compounds with other crystal structures than the above three types have been reported in the literature.

The crystal structures of $MnGe_4$ and $CoGe_4$ do not belong to the above-mentioned structure groups. The unit cells of MnGe₄ and CoGe₄ are considered to be superlattices of the β -NiHg₄-type cell. Figure 5 shows the crystal structure of β -NiHg₄. The β -NiHg₄ type is a filled up derivative of the bcc structure. Ni atoms form a bcc lattice and are surrounded by eight Hg atoms at the corners of a cube. The β -NiHg₄-type structure is found in NiHg₄, PtHg₄, CrGa₄, and $MnGa_4$ (12). Among these compounds, the atomic sizes of the constituent elements in MnGa₄ are almost the same as those in $MnGe_4$ and $CoGe_4$. The comparison of the sizes of the unit cells of MnGa₄, MnGe₄, and CoGe₄ is shown in Fig. 6. The size of the unit cells of MnGe₄ and CoGe₄ corre-

FIG. 6. Unit cells of MnGe₄ and CoGe₄ compared with the MnGa₄ structure (β -NiHg₄ type).

spond to four times and eight times that of $MnGa_4$, respectively.

Since the β -NiHg₄-type cell contains 2 formula units, the unit cells of MnGe₄ and CoGe₄ should contain 8 and 16 formula units, respectively. According to the present model, the theoretical densities of MnGe₄ and CoGe₄ were calculated to be 6.60 and 6.96 g/cm³, respectively. The chemical formula units of the compounds were taken as Mn_{0.875}Ge₄ and Co_{0.975}Ge₄, which follows the results of chemical analysis. The pycnometrically measured densities of MnGe₄ and CoGe₄ were 6.35 and 6.60 g/cm³, which agree with the calculated values within 5%.

Figure 7 shows the X-ray powder diffraction patterns of MnGa₄, MnGe₄, and CoGe₄. In the diffraction patterns of MnGe₄ and CoGe₄, the diffraction peaks corresponding to the strong diffraction peaks of MnGa₄ were also observed in MnGa₄ with the β -NiHg₄-type structure. This fact suggests that the crystal structures of MnGe₄ and CoGe₄ are the superstructures of the β -NiHg₄-type structure.

The absence of reflections (220) in the diffraction patterns of $MnGe_4$ and $CoGe_4$, which correspond to the (110) peak of $MnGa_4$, indicate that the slight positional changes of transition metal atoms from the ideal positions in the β -NiHg₄-type structure occur. It is plausible that the formation of the superstructures in MnGe₄ and CoGe₄ is due to vacancies at the transition metal sites and thus results in small positional changes of transition metal atoms. Since attempts of the single crystal growth of MnGe₄ and CoGe₄ under high pressure conditions were not successful, detailed structural analyses on single crystals were not possible.

Magnetic Properties of MnGe₄

MnGe₄ is a ferromagnetic with a Curie temperature of 340 K. The value of saturation magnetic moment, μ_s , does not agree with that of paramagnetic moment, μ_c , determined from the Curie–Weiss law. The curve of the magnetization against temperature is close to a Brillouin function and shows no evidence of ferrimagnetic behavior. The nonsaturating behavior of magnetization (see Fig. 1) can be explained by the itinerant electron theory of ferromagnetism (13, 14). In that case, the disagreement between μ_s and μ_c may be due to the spin fluctuation in the itinerant electron system.

In ferromagnets with the localized magnetic moment systems, $\mu_{\rm c}/\mu_{\rm s}$ (Rhodes–Wohlfarth ratio) is 1. However, in an itinerant electron ferromagnet, μ_c/μ_s is larger than 1 (15). The relationship between $\mu_{\rm c}/\mu_{\rm s}$ and $T_{\rm c}$ is characteristic of itinerant electron ferromagnets. The μ_c/μ_s values fall on a unique curve if plotted against the Curie temperature (15). Itinerant electron ferromagnets have wide distribution of properties, varying from "weakly ferromagnets," in which the T_c is low and the μ_c/μ_s is large, to "ferromagnets with nearly localized moment," in which the $T_{\rm c}$ is high and the $\mu_{\rm c}/\mu_{\rm s}$ is nearly equal to 1 (15, 16). MnGe₄ (μ_c/μ_s = 1.7, T_c = 340 K) lies on the Rhodes-Wohlfarth curve and is situated in the intermediate region between weakly ferromagnets and nearly localized ferromagnets.

In itinerant electron systems, spin fluctu-

FIG. 7. X-ray powder diffraction patterns of MnGa₄, MnGe₄, and CoGe₄ (CuK α radiation for MnGa₄ and MnGe₄, CoK α for CoGe₄).

ations have an important effect upon the magnetic and transport properties of the compounds (17-19). A theory for the transport properties of weakly ferromagnets has been developed (18). However, no satisfactory theory has been proposed for itinerant electron ferromagnets belonging to the in-

termediate region between weak ferromagnets and nearly localized ferromagnets. The electrical resistivity, ρ , of a weak ferromagnet displays the relation ρ vs T^2 at low temperature and ρ vs $T^{5/3}$ at near T_c due to spin fluctuations (18). Although MnGe₄ is not really a weakly ferromagnet, a $T^{5/3}$ depen-

FIG. 8. ρ versus $T^{5/3}$ plots of MnGe₄.

dence of the electrical resistivity was observed in the temperature region near T_c as shown in Fig. 8. This fact might be an indication that the effect of spin fluctuations on the transport predominates, relative to the lattice vibration effects in MnGe₄.

Summary

Two new germanides, MnGe₄ and CoGe₄, were synthesized under high pressure-temperature conditions. The exact chemical compositions of the prepared specimens were determined to be $Mn_{0.875}Ge_4$ and $Co_{0.975}Ge_4$, respectively. The crystal structures of both compounds were superstructures of the β -NiHg₄-type structure. The unit cell of MnGe₄ is composed of four β -NiHg₄-type cells, and that of CoGe₄ is composed of eight β -NiHg₄-type cells. The formation of the superstructure might originate from the defect formation at the transition metal sites and from the slight positional changes of the transition metal atoms.

tron ferromagnet with a Curie temperature of 340 K, and is situated in the intermediate region between weakly ferromagnets and nearly localized ferromagnets on the Rhodes–Wohlfarth curve. $CoGe_4$ is a Pauli paramagnetic metal.

References

- 1. B. ARONSSON, T. LUNDSTRÖM, AND S. RUND-QVIST, "Borides, Silicides and Phosphides," Methuen, London (1965).
- I. ENGSTRÖM AND B. LÖNNBERG, J. Appl. Phys. 63, 4476 (1988).
- 3. P. K. PANDY AND K. SCHUBERT, J. Less-Common Met. 18, 175 (1969).
- 4. V. I. LARCHEV AND S. V. POPOVA, J. Less-Common Met. 98, L1 (1984).
- H. TAKIZAWA, T. SATO, T. ENDO, AND M. SHIMADA, J. Solid State Chem. 68, 234 (1987).
- 6. H. TAKIZAWA, T. SATO, T. ENDO, AND M. SHIMADA, J. Solid State Chem. 73, 40 (1988).
- 7. H. TAKIZAWA, T. SATO, T. ENDO, AND M. SHIMADA, J. Solid State Chem. **73**, 427 (1988).
- R. KUBIAK AND M. WOŁCYRZ, J. Less-Common Met. 97, 265 (1984).
- R. KUBIAK AND M. WOŁCYRZ, J. Less-Common Met. 109, 339 (1985).
- J. K. BURDETT, J. Solid State Chem. 45, 399 (1982).
- T. MATKOVIĆ AND K. SCHUBERT, J. Less-Common Met. 59, P35 (1978).
- P. ECKERLIN AND H. KANDLER, in "Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series" (K. H. Hellwage and A. M. Hellwage, Eds.), Vol. 6, Springer-Verlag, Berlin/Heidelberg/New York (1971).
- S. OGAWA AND N. SAKAMOTO, J. Phys. Soc. Japan 22, 1214 (1967).
- 14. D. M. EDWARDS AND E. P. WOHLFARTH, Proc. R. Soc., Ser. A 303, 127 (1968).
- P. RHODES AND E. P. WOHLFARTH, Proc. R. Soc., Ser. A 273, 247 (1963).
- E. P. WOHLFARTH, J. Magn. Magn. Mater. 7, 113 (1978).
- 17. T. MORIYA, J. Magn. Magn. Mater. 14, 1 (1979).
- K. UEDA AND T. MORIYA, J. Phys. Soc. Japan 39, 605 (1975).
- 19. K. UEDA, J. Phys. Soc. Japan 43, 1497 (1977).